

UAV Autonomous Navigation in a GPS-limited Urban Environment

Yoko Watanabe DCSD/CDIN

THE FRENCH AEROSPACE LAB

retour sur innovation

Introduction

Global objective

Development of a UAV onboard system to maintain flight security and navigation & guidance capability for urban operation

GPS signal occlusion

Alternative GPS-independent navigation system

- Path planning with GPS signal occlusion map
 - Safe path plan w.r.t. localization uncertainty
 - Sensor availabilities

A. Gorski «Understanding GPS performance in urban environments» http://blogs.agi.com/agi/2011/01/04/understanding-gps-performance-in-urban-environments/

GPS-independent navigation system

Objective

- Development of <u>alternative back-up navigation system</u> which estimates UAV absolute state by using onboard sensors other than GPS, given the last GPS-updated state
 - No dedicated sensors
 - No knowledge on environment
 - Low computation
 - Robustness
- In-flight validation on outdoor UAV helicopter
 - Onboard system integration with
 - flight avionics
 - onboard sensors
 - Closed-loop flight using existing GN&C functions with GPS signal cut-off

3

Vision-aided inertial navigation

- Stereo vs Monocular visions
- Pure vision vs INS-fusion
- Visual odometry vs Visual SLAM
- Filter vs Optimization (BA)

4

Vision-aided inertial navigation

Visual odometry

- Stereo vision
- Monocular vision (motion stereo)

[Kelly 2007], [Kendoul 2009] and many others.

Low computation
 Estimation drift due to absence of absolute measurement

Visual SLAM

Loop-closure (memorization of feature points)

[Weiss 2012], [Chaudhar 2013] and many others.

High computation + memory-use
 Estimation correction with absolute measurement

• Keyframe-based SLAM [Klein 2007] and many others.

Optical flow estimation

Robust estimation of Affine model optical flow field (DTIM)

- Feature point matching on a small window
- RANSAC approximation
- ~10Hz

$$\phi \mathbf{x}_{\mathbf{p}_k} = \mathbf{A}_k \mathbf{x}_{\mathbf{p}_k} + \mathbf{b}_k$$

Optical flow estimation

Onboard system architecture

JSO - Aerial Robotics 2014/10/02-03

8

Onboard system architecture with GPS-independent navigation

Open-loop flight test results

♦ OF + INS + Barometer

- with or w/o laser (alt. AGL)
- over a slope

10

Closed-loop flight test results

GPS cut-off during WP tracking mission

- Rectangle trajectory 40 x 80 (m)
- Constant heading into wind NW
- 10m of WP-reach criteria
- Flight distance (w/o GPS)
 ~ 320 (m)
- Flight time (w/o GPS)
 ~ 130 (sec)

Closed-loop flight test results

OF-estimated vs. GPS-estimated position and velocity

- Position estimation error < 12m
- Stable altitude estimation by barometer + laser
- WP miss distance < 12m

Position

Velocity

Closed-loop flight test results (3/3)

Position and velocity estimation errors

Closed-loop flight test results with INS-only navigation

Position and velocity estimation errors

14

Closed-loop flight test results with INS-only navigation

Position and velocity estimation errors

15

Summary for GPS-independent navigation system

Summary

- Development and in-flight validation of optical flow-based inertial navigation system
- WP tracking mission continuation with GPS cut-off (switch navigation modes)

Perspectives

- Performance improvement
 - Different OF estimation algorithms
 - Different VINS algorithms
- Demonstration of automatic return-to-base w/o GPS
 - Return-to-base by VO
 - Automatic landing with vision-based control
- Reconfigurable navigation system
 - Sensor failure
 - GPS accuracy

16

Path planning with GPS signal occlusion map

F. Kleijer et al. «Prediction of GNSS availability and accuracy in urban environments»

 Prediction of PDOP (Positional Dilution of Precision) of GPS at a certain time & location, from 3D obstacle map

UAV safe operation planning

Motivation

- Avoid zones at high risk of GPS signal loss, if no degraded navigation mode is available
 - \rightarrow Use sensor availability map in path planning task
 - \rightarrow Choice of the best navigation mode
- Take more safety margin when using degraded navigation mode
 Obstable collision risk wert localization was resident.
 - \rightarrow Obstacle collision risk w.r.t. localization uncertainty

3D safe path planning problem

- Objective = find a <u>safe & short</u> path from A to B
- ✤ Given :
 - Environment model = 3D voxel occupancy map
 - *N* different UAV localization modes
 - Positional availability
 - Error propagation model
 - Collision criteria
 - Minimum safety distance = ds
 - Uncertainty corridor = $(2\sigma+ds)$ -ellipsoid evolution
 - Safe path = no interception between the corridor and occupied voxels
 - Minimizing function =

Volume of the uncertainty corridor

- Path length
- Integrated localization uncertainty

Related work

Path planning with localization uncertainty

- Ground mobile robot navigation with
 - Dead-reckoning
 - Landmark detection
- Collision risk-free minimum distance path
 - A* : [Alami 1994], [Lambert 2003], [Gonzales 2005] etc.
 - Sampling-based (PRM, RRT) : [Peppy 2006], [Luders 2013], [Bopardikar 2014] etc.
 - POMDP : [Candido 2010] etc.

19

JSO – Aerial Robotics 2014/10/02-03

ONERA

Related Work (2/2)

Path and <u>observation strategy</u> planning

A. Yamashita, K. Fujita and K. Kaneko, "Path and viewpoint planning of mobile robots with multiple observation strategies," IROS 2004.

- Ground mobile robot navigation with
 - Dead-reckoning
 - Landmark detection
 - 1 landmark by stereo
 - 2 landmarks
 - 3 landmarks
- Two-stage planning
 - Search for all collision risk-free paths
 - with maximum allowable localization uncertainty
 - Viewpoint (and localization mode) planning on each path

3D safe path planner architecture

Example 1 : No VINS

- Path planning with GPS availability map
 - No vision-aided navigation mode available onboard

Example 2 : with VINS

Remark : Dependence on optical flow measurement noise

Example 3 : with VINS + Landmarks

Remark : Alternate use of VINS and Landmarks → Fusion

Summary for 3D safe path planning

✤ 3D safe path planner

- Under uncertainty with multiple localization modes
- Simulation studies with UAV obstacle field navigation benchmark
- Preliminary flight test to validate onboard mapping and planning

Future work

- Dynamic path re-planning using sampling-based graph search (RRT*)
 - online mapping
 - supervision on real sensor availability and localization performance
- Path planning with different guidance strategies
 - visual servoing (e.g. wall following etc.)

25